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The simple ultrastructure of the maize
kinetochore fits a two-domain model
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Abstract. Light microscope observations suggest there are
two discrete biochemical domains in the plant kinetochore, an
inner domain containing structural proteins, and an outer
domain containing proteins involved in motility. We analyzed
the ultrastructure of maize meiotic kinetochores following high
pressure freezing and freeze substitution, a method that pro-
vides excellent sample preservation. Data from meiosis II sup-
port previous descriptions of plant kinetochores as diffuse,
nearly invisible domains, sometimes nesting in a cup of darkly
staining chromatin. The ultrastructure is similar in meiosis I
but there are two sister kinetochores that each protrude away

from the chromosome and form their own distinct kinetochore
fibers. Microtubules terminate within kinetochores where their
ends are splayed in a cone-shaped configuration suggestive of
microtubule disassembly. We could not detect any significant
substructure within the kinetochore proper. We suggest that the
diffuse structure classically defined as the kinetochore repre-
sents only the outer domain of a two-domain organelle. The
inner domain, known to contain chromatin-binding proteins,
probably extends into the electron-dense chromatin of the pri-
mary constriction.
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The plant kinetochore is classically defined as the organelle
that interacts with the centromere and guides chromosome
movement. However, as kinetochore proteins have been identi-
fied and characterized, the distinction between kinetochore
and centromere has begun to blur. For instance Centromere-
specific Histone-H3 (known as CENH3 or CENP-A) is a his-
tone variant that binds directly to centromeric DNA through-
out the cell cycle (Henikoff et al., 2001). Other proteins such as
CENP-C interact closely with CENH3 in a higher-order chro-
matin configuration (Ando et al., 2002). Such structural pro-
teins are referred to as inner kinetochore proteins or centro-
mere proteins. In contrast, many other kinetochore proteins are
“passengers” that are only present and necessary during chro-
mosome segregation (Yu et al., 2000; Houben and Schubert,
2003). Examples are Mitotic Arrest Defective 2 (MAD?2), a pro-
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tein that regulates the onset of anaphase (Yu et al., 1999), and
Centromere Protein E (CENP-E), a kinesin-like protein in-
volved in several aspects of chromosome movement (Hoopen
et al., 2002). In both animals and plants, passenger proteins
tend to localize to an outer domain of the kinetochore. This is
particularly evident in maize, where CENH3 and CENP-C
occupy a discrete inner domain, while MAD2 and another
phosphoprotein involved in regulating chromosome movement
(the 3F3/2 antigen) lie in an outer domain (Yu et al., 1999).
Despite recent evidence for biochemical subdomains in the
plant kinetochore, reports on the ultrastructure of the kineto-
chore provide no support for a subdomain organization. Micro-
tubules terminate in a diffuse irregular structure that is less
electron-dense than chromatin, and which sometimes appears
to contain granules (Wilson, 1968) or fibrils (Braselton and
Bowen, 1971). The term “ball in a cup” has been used to
describe the plant kinetochore, with the emphasis being more
on the “cup” of chromatin than the “ball” within (Bajer and
Mole-Bajer, 1972). By contrast, animal kinetochores are quite
striking when observed in the electron microscope (Brinkley et
al., 1989). They are often regarded as having four domains,
three discrete layers each defined by differing electron density,
and a fibrous corona extending away from the kinetochore.
Interestingly, data from a recent report on animal kineto-
chores preserved using high pressure freezing contradicts the
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three-layer model, suggesting that there is only one electron
dense domain with an associated corona (McEwen et al., 1998).
The authors argued that the trilaminar structure is an artifact of
poor fixation. Intrigued by this observation, we use high pres-
sure freezing to revisit the structure of plant kinetochores with
the hope that more detail might be revealed. Nevertheless the
results strongly confirm the original descriptions; in fact our
analysis shows kinetochores to be essentially indistinguishable
from the cytoplasm. In plants the kinetochore can only be
definitively identified by a collection of microtubules that ter-
minate at a focus on the chromosome. We suggest that the dif-
fuse structure often described as the complete organelle is only
half of it — the outer domain. The inner domain containing
chromatin proteins would most likely appear as chromatin.
Strands of deeply staining material that extend into the kineto-
chore proper are likely the ultrastructural manifestations of the
mner kinetochore.

Materials and methods

Electron microscopy

Anthers roughly 1.5 mm in length (meiosis I) or 1.75 mm in length (meio-
sis 1I) were removed from tassels of the maize inbred W23 and placed into
buffer A (Hiatt et al., 2002). The anthers were then bisected with a razor
blade and placed in either aluminum or brass planchettes with enough 15%
(w/v) dextran (MW 40,000) in water to displace the air surrounding each
sample. Samples were frozen using a Balzer's HPM 010 High Pressure Freez-
ing Machine, freeze substituted, and processed for study with TEM accord-
ing to published procedures (Mims et al., 2003). Briefly, after 4 days in sub-
stitution fluid at - 80° C, samples were transferred to a—20°C freezer for 3 h,
a 4°C refrigerator for 2 h and brought to room temperature in the hood for
30 min. Samples were separated from the planchettes, rinsed 3 times in anhy-
drous acetone, and slowly infiltrated with Araldite/Embed 812 resin. Follow-
ing polymerization in Permanox petri dishes, anthers at specific stages of
development were selected under the light microscope for sectioning. Thin
sections were cut with a diamond knife, picked up on slot grids and allowed
to dry on formvar-coated aluminum racks (Rowley and Moran, 1975). Sec-
tions were post-stained for 3 min each with a saturated solution of uranyl
acetate followed by lead citrate (Reynolds, 1963) and examined using a Zeiss
EM 902A transmission electron microscope operating at 80 kV.

Light microscopy

Maize anthers were fixed in formaldehyde and incubated with a combi-
nation of directly-labeled anti-MAD2 and anti-CENP-C antisera (Yu et al.,
1999; Fig. 1C), or indirectly labeled anti-CENH3 and anti-tubulin antisera

Fig. 1. The maize meiosis I kinetochore. (A) Three prometaphase I cells
and their associated tapetal cells (lower line of cells). The chromosomes (Chr)
and spindle (Sp) are indicated. (B) Higher magnification view of the separa-
tion of sister kinetochores (S) at prometaphase 1. The inner (I) and outer
kinetochores (O) are indicated with brackets. The boundaries of what appear
to be two independent kinetochore fibers are indicated with bi-directional
arrows terminated with bars. (C) Light microscope view of a kinetochore at
prometaphase I. The inner kinetochore (I) protein CENP-C is shown in green
and the outer kinetochore (O) protein MAD?2 is indicated in red. Note the
clear separation of domains despite the extensive stretching of the kineto-
chore at this stage. This image was provided by Hong-Guo Yu. (D) Light
microscope image of the separation of sister kinetochore fibers at prometa-
phase I. Kinetochores are stained with antibodies to CENH3 (red) and tubu-
lin is labeled in green. Arrows indicate the clear separation of both the kineto-
chores and the associated bundles of microtubules.
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Fig. 2. The maize meiosis II kinetochore. (A) Two prometaphase I cells, recently separated from each other at meiosis I, are
shown. Chromosomes (Chr) and spindle (Sp) are indicated. (B) A prometaphase II chromosome (black) showing both kinetochores
and associated microtubules. The inner (I) and outer domain (O) of one kinetochore is indicated with brackets. (C) Another
prometaphase II cell showing the “ball in cup” morphology. A cup of chromatin harbors a kinetochore that is nearly indistinguish-
able from the surrounding cytoplasm. (D) A high magnification view of microtubule ends in a prometaphase II kinetochore, The
apparent splaying of protofilaments is indicated with an arrow.

(Zhong et al., 2002; Fig. 1D). Cells were then analyzed using an Applied Pre-
cision deconvolution-based 3D light microscopy system. Images were pro-
cessed using software supplied by the manufacturer.

Results

General morphology of maize meiotic spindle and

kinetochores

After high pressure freezing and freeze substitution, maize
meiocytes were well preserved, showing dense microtubule-
filled spindles that exclude most cytoplasmic organelles
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(Figs. 1A, 2A). Meiotic kinetochores could only be identified by
the cluster of well-preserved microtubules that terminated
within them. We found no evidence of granules of any particu-
lar structure or size, fibrils, or even a characteristic electron
density that would allow us to reproducibly identify the bound-
aries of the kinetochore. As described previously (Braselton
and Bowen, 1971; Wilson, 1968), meiosis I kinetochores tend
to protrude from the surface of the chromosomes (Fig. 1B),
while meiosis 11 kinetochores tend to be sunken within the
chromatin mass (Fig. 2B, C). This diffuse, ill-defined region
classically defined as the kinetochore is referred to here as the
“kinetochore proper”.




In several cases we observed what appeared to be strands of
chromatin stretching out into the kinetochore proper. This is
particularly evident in EM images of meiosis I (Fig. 1B, arrow),
though at the light microscope level the inner and outer
domains remain clearly distinguishable (Fig. 1C).

Sister kinetochores and their associated kinetochore fibers

are distinct at prometaphase I

Data from both animals and plants suggest that the meiosis
kinetochore can be differentiated into two distinct sister kine-
tochores at or just before the time of microtubule attachment.
As prometaphase progresses into metaphase, the separation of
sister kinetochores becomes more and more distinct, such that
they can often be fully resolved from each other in the light
microscope at anaphase (Goldstein, 1981; Suzuki et al., 1997;
Dawe, 1998; Dawe et al., 1999). Sister kinetochore separation
at meiosis I has never been demonstrated at the electron micro-
scope level in plants. As shown in Fig. 1B, our data revealed
this phenomenon, and suggest that each kinetochore has its
own kinetochore fiber (the bundle of microtubules attached to
the kinetochore is known as the kinetochore fiber).

We could better resolve parallel sister kinetochore fibers by
processing cells for light microscopy and labeling them with
antibodies to tubulin and CENH3 (Zhong et al., 2002). The
effect was most obvious at prometaphase 1. As exemplified in
the cell shown in Fig. 1D, at this stage sister kinetochores as
well as their associated kinetochore fibers are split in two. In
several cells we observed kinetochore fibers that stayed visibly
separate all the way to the spindle poles. As the meiocytes pro-
gress from prometaphase I through metaphase I and anaphase
[, the separation of fibers becomes less evident (data not
shown).

Microtubules are splayed at the kinetochore interface

In one of the earliest studies of plant kinetochores, the
authors described “structural irregularities” of the microtu-
bules as they contacted the kinetochore (Wilson, 1968). The
irregularities appeared as thickened microtubules and an ap-
parent breakdown of the polymer. A similar change in microtu-
bule morphology was described in kangaroo rat kinetochores
(in an abstract without images: Mastronade et al., 1997). Simi-
larly, we found that microtubules within the maize kinetochore
broadened substantially at the ends (Fig. 2D). The shapes of
microtubule ends resembled cones cut crosswise, as if the pro-
tofilaments were splaying apart.

Discussion

The plant kinetochore has few distinguishing ultrastructural

features beyond serving as a focal point for microtubule

attachment

Our goal was to document the ultrastructure of plant kineto-
chores under conditions that preserved the structure as effec-
tively as possible. We adopted high pressure freezing/freeze
substitution as the most suitable method available, since it has
been shown to be superior in a number of applications (Dahl
and Stachelin, 1989; McDonald, 1999).

Our observations of well-preserved kinetochores confirm
and extend the results of a variety of previous publications.
Studies in Tradescantia, wheat, Lilium, Allium, and Zephy-
ranthes (Wilson, 1968; Braselton and Bowen, 1971; Bajer and
Mole-Bajer, 1972; Wagenaar and Bray, 1973; Esponda, 1978;
Hanaoka, 1981) all suggest that plant kinetochores have little or
no discernable substructure. In some cases the kinetochore
appears more electron dense than the surrounding cytoplasm
(Bajer and Mole-Bajer, 1972; Wagenaar and Bray, 1973), but
even this feature is inconsistent in our hands. In fact no attri-
bute of the striking ultrastructure of animal kinetochores
(Brinkley et al., 1989) is discernable in plants, suggesting that
animal and plant kinetochores differ considerably.

Perhaps the single most distinguishing feature of plant
meiotic kinetochore is the morphology of the microtubule ends.
Consistent with previous data (Wilson, 1968; Mastronade et
al., 1997), we show here that the microtubules in plant kineto-
chores can be splayed at their ends, as if the protofilaments are
drawing away from each other. Since a splaying or curling of
protofilaments is characteristic of depolymerizing microtu-
bules (Mandelkow et al.,, 1991), our data may suggest that
microtubules are shortening within the kinetochores. Animal
kinetochores contain a microtubule-depolymerizing kinesin
(Mitotic Centromere Associated Kinesin; MCAK) suggesting
that this may indeed be the case in some species (Maney et al.,
2000). Alternatively, the splayed appearance of microtubule
ends may represent a specialized morphology involved in
attaching the spindle to the kinetochore (Mastronade et al.,
1997).

A new interpretation of the kinetochore ultrastructure with

respect to a two-domain model

The results shown here represent the first study of kineto-
chore ultrastructure in maize, a species where a substantial
amount of information on the centromere/kinetochore com-
plex is already available (Yu et al., 2000; Houben and Schubert,
2003). Based on previous data, we had reason to believe that
the maize kinetochore is composed of two subdomains, each
with different functions. CENP-C and CENH3 both lie close to
centromeric DNA, while MAD?2 and the 3F3/2 antigen lie well
outside of centromeric DNA and the inner kinetochore pro-
teins (Yu et al., 1999). How can we reconcile data showing the
existence of non-overlapping biochemical subdomains in the
kinetochore with the fact that there is no evidence for subdivi-
sion at the ultrastructural level?

We suggest that the diffuse kinetochore proper represents
only the outer domain as we defined it biochemically (Fig. 3).
Supporting this view is the fact that microtubules appear to ter-
minate throughout the kinetochore in maize (Fig. 2C, D) and
other plants (e.g. Wagenaar and Bray, 1973; Hanaoka, 1981).
The two known outer kinetochore proteins in maize, MAD?2
and the 3F3/2 antigen, overlap perfectly and lie outside of the
centromeric chromatin at prometaphase (Yu et al., 1999), sug-
gesting that the outer domain is a large and relatively uniform
structure. We further suggest that the inner domain lies entirely
within the electron-dense chromatin. The idea that the inner
kinetochore has properties of chromatin is strongly supported
by recent evidence. Centromeric Histone H3 (CENH3) is a
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Fig. 3. A model of the plant kinetochore. The inner kinetochore (I),
bounded here by a white line, does not stain differently from the rest of the
chromatin (black). Occasionally chromatin extends into the outer domain
(O). The outer kinetochore has no distinguishing staining characteristics
under the electron microscope (after staining with uranyl acetate and lead
citrate) but can be readily identified under the light microscope using anti-
bodies to MAD?2 (Fig. 1C). Microtubules terminate throughout the outer
kinetochore, where the ends appear splayed.

known histone H3 variant and a key clement of the inner kine-
tochore (Henikoffet al., 2001). Likewise, CENP-C is a constitu-
tive protein of the inner kinetochore (Tomkiel et al.. 1994) that
co-immunoprecipitates with CENH3 (Ando et al., 2002). indi-
cating that it lies within a higher-order centromeric chromatin
complex. Several more inner kinetochore proteins have been
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